—_ —-v

ity
L

rreet
t

Outline

m List of Math libraries.

m What the users should keep in mind while choosing math functions
m Benefits from Compiler and how to proceed

m Math library single node performance (Don’t take it seriously!)

m Future Plans

List of Math Libraries

m Engineering & Scientific Subroutine Libraries (ESSL)
» Only Static libraries
» No shared libraries

m Mathematics Accelerated Scientific Subroutines (MASS)
m Mathematics Accelerated Scientific Subroutines Vectorized (MASSV)
m FFTW

ESSL for BG/L

m Based on ESSL 4.2 for p-series Linux/AlX.

m Uses same code/ algorithms used for other ESSL releases.

m Core routines optimized to exploit higher order compiler optimizations
(-O4, -05).

m Optimized to provide maximum benefit of 440d (double hummer)

m Always use —garch=440d, -qtune=440 to get the double hummer
code generations..(not necessarily always would provide
performance benefits!).

ESSL Modules

m Linear Algebra Subprograms
- Vector-scalar
Sparse vector-scalar
- Matrix-vector
Sparse matrix-vector

m Matrix Operations
Addition, subtraction,
multiplications, rank-k updates,
rank-2k updates and transpose

® Linear Algebra Equations
- Dense linear algebraic equations
- Banded linear algebraic equations
Sparse linear algebraic equations
Linear least squares

(1)

©o -~ O O

o O O Ww

(S)
41
11

32

25

53
18

(L)
41
11
32

26

58
18
11

ESSL Modules (Contd..)

m Eigensystem Analysis)] (S) (L)
» Solutions to general eigensystems
& general eigensystem analysis
problems 0 8 8

m Signal Processing Computations

- Fourier transforms 0 15 11
» Convolutions and correlations 0 10 2
Related Computations 0 6 6

m Sorting and Searching
- sorting, sorting with index, &
binary and sequential searching 3) 5 5

ESSL Modules (Contd...)

m Interpolation ()] (S) (L)
Polynomial and cubic spline
interpolation 0 4 4

® Numerical Quadrature
Numeric quadrature on a set of
points or on a functions 0 6 6

® Random Number Generation
Generating vectors of uniformly

distributed random numbers 0 3 3
m Utilities 8 0 3
m Total 13 240 253

Planning Your Program

m Select an ESSL subroutine

m Avoid Conflicts with Internal ESSL Routine Names Exported
m Setting up your data

m Setting up your ESSL calling sequences

m Using auxiliary storage in ESSL

m Providing a correct transform length in ESSL

m Getting the best accuracy

m Getting the best performance

m Dealing with errors while using ESSL

Planning Your Program

m An ESSL subroutine is a named sequence of instructions within the ESSL product
library whose execution is invoked by a call.

m Interpreting the subroutine names with a prefix underscore

Example :
_GEMUL (all versions of the matrix multiplication subroutine
SGEMUL, DGEMUL, CGEMUL and ZGEMUL

S for short-precision real, D for long-precision real
C for short-precision complex Z for long-precision complex
| for integer

m Syntax
fortran CALL NAME-1 | NAME-2 | ...| NAME-n (arg-1, arg-2,..., arg-m,..)
C & C++ name-1 | name-2 |....| name-n (arg-1,, arg-m,...);

Planning Your Program (Contd..)

m Conflicts with Internal ESSL routines :
Avoid using ESV as prefix names for your names.

m Scalar data passed to ESSL from all types of programs, including
Fortran, C,and C++, should confirm to ANSI/IEEE 32-bit floating
point format as per ANSI/IEEE standard for binary floating-point
arithmatic, ANSI/IEEE Standard.

m All arrays, regardless of the type of data, should be aligned to
ensure optimal performance. Alignment exceptions can be figured
out through compilation options.

Planning Your Program (Contd..)

m Conflicts with Internal ESSL routines :
Avoid using ESV as prefix names for your names.

m Scalar data passed to ESSL from all types of programs, including
Fortran, C,and C++, should confirm to ANSI/IEEE 32-bit floating
point format as per ANSI/IEEE standard for binary floating-point
arithmatic, ANSI/IEEE Standard.

m All arrays, regardless of the type of data, should be aligned to
ensure optimal performance. Alignment exceptions can be figured
out through compilation options.

ESSL Functional Testing

m We have functional tests carried out with a number of different options
« -03 440 (98% success)”.
<« -03 440d (95% success)”.
< -05440d (91% success)”.

m A number of outstanding defects fixed in compilers (particularly the
TPO, TOBEY related).

* Based on results for ESSL 4.1 in 2004.

Example Routine (DASUM)

m SUM = DASUM (N,DX,INCX)

m Compute the sum of the absolute values in the vector.

m A comparison of results from vanilla code with ESSL.

m Example codes : dasum.F (removing gstrict, O3)
dasum_vanilla.F (code from netlib)
dasum_orig.F (code from ESSL)

m Use —qdebug=diagnostic to examin which loops are simdized.

m Limitation : among loops with strides, simdization only possible for
stride 1 loops.

Hence : Vanilla dasum code performance is better than ESSL !

m Solution : Adding Pragmas to take care of non stride 1 loops (
available in future compiler releases)

ESSL sample performance results

350
300 A
A

250
200 //:ﬂfﬂ\\ 03 440 (8)

7 / 03 440 (E
4 / i \\\ AY G
™ . 05440 (E)
= 150 | A A [\ o
| 05 440d (E)
—o—
100 WANRER S8 &
/{ N2 ey ey
1]
50 /
0 v I I I I I I] I] I I
10 200 800 5000 20000 80000
40 500 2000 8000 50000 200000
Array Size

MASS/MASSYV Libraries

m Provides elementary math functions in both scalar and vector form

< Examples : sqrt, pow, inv, log etc.
m Provides trigonometric and hyperbolic math functions in scalar and vector form.
m Examples : sin, cos, tan, atan, sinh

m All the routines are C routines (replacing Assembly routines written for p-
series).

m Alist of functions already supported :

< Scalar functions : atan, exp, rsqrt, tanh, sincos, cosh, log sinh sqrt, pow, tan

< Vector functions : vacos, vcos, vlog1p, vsasin, vsexpm1, vslog, vssinh, vasin,
vlog, vsatan2, vsexp, vspow, vssin, vatan2, vdiv, vpow, vscbrt, vsincos, vsqrt,
vssqrt, vcbrt, vrcbrt, vscosh, vsinh, vsrcbrt, vstanh, vcosh, vexpm1, vrec,
vscosisin, vsin, vsrec, vstan, vexp, vrsqrt, vscos, vslog10, vsrsqrt, vtanh,
vcosisin, vlog10, vsacos, vsdiv, vslog1p, vssincos, vtan

Sample MASS library performance benefits

Function Libmass.a (cycles) | Libm.a (cycles)
sqrt 42.0 101.0
rsqrt 35.0 133.0
exp 56.0 168.0
log 68.0 316.7
sin 66.6 191.9
cos 65.8 199.9
tan 89.5 316.5
atan 109.0 216.0
sinh 81.0 326.1
cosh 68.0 239.4
pow 157.0 521.3

Summary

m We provide the same set of math libraries for BG/L as provided in
other IBM platforms .

m Functionality part has been tested and verified.(2004)

m Math libraries will have significant performance improvements in next
few months.(Specifically ESSL release for BG/L targetted for October
2005)

m Higher optimizations (-O4/ —-05) a reality !

m A number of compiler fixes and improvements (including special
pragmas supporting math functions).

m Need your feed back in terms of performance/tuning results to further
improve.

